Trajectory Generation for an On-Road Autonomous Vehicle
نویسندگان
چکیده
We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the onedimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.
منابع مشابه
Adaptive Robust Control for Trajectory Tracking of Autonomous underwater Vehicles on Horizontal Plane
This manuscript addresses trajectory tracking problem of autonomous underwater vehicles (AUVs) on the horizontal plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by unknown boundary levels. The proposed approach is based on a dual layer adaptive...
متن کاملDesign of Robust Finite-Time Nonlinear Controllers for a 6-DOF Autonomous Underwater Vehicle for Path Tracking Objective
In this paper, kinematic and dynamic equations of a 6-DOF (Degrees Of Freedom) autonomous underwater vehicle (6-DOF AUV) are introduced and described completely. By developing the nonsingular terminal sliding mode control method, three separate groups of control inputs are proposed for the autonomous underwater vehicle subjected to uncertainties including parametric uncertainties, unmodeled dyn...
متن کاملMotion Planning in Urban Environments
We present the motion planning framework for an autonomous vehicle navigating through urban environments. Such environments present a number of motion planning challenges, including ultrareliability, high-speed operation, complex intervehicle interaction, parking in large unstructured lots, and constrained maneuvers. Our approach combines a model-predictive trajectory generation algorithm for c...
متن کاملDriver Support System Based on a Non-linear Slip Observer for off Road Vehicles
Off road ground vehicles have many potential applications, including space, defence, agriculture, mining and construction. Increased autonomy of ground vehicles will not only improve the safety of the operators but also assist in trajectory tracking. Accurate estimation of slip is essential in developing autonomous navigation strategies for mobile off road vehicles operating in unstructured ter...
متن کاملAdaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کامل